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The Richtmyer–Meshkov instability of a low-Atwood-number miscible two-liquid
system is investigated experimentally. The initially stratified fluids are contained
within a rectangular tank mounted on a sled that rides on a vertical set of rails.
The instability is generated by dropping the sled onto a coil spring, producing a
nearly impulsive upward acceleration. The subsequent free-fall that occurs as the
container travels upward and then downward on the rails allows the instability to
evolve in the absence of gravity. The interface separating the two liquids initially has a
well-defined sinusoidal perturbation that quickly inverts and then grows in amplitude
after undergoing the impulsive acceleration. Disturbance amplitudes are measured and
compared to theoretical predictions. Linear stability theory gives excellent agreement
with the measured initial growth rate, ȧ0, for single-mode perturbations with the
predicted amplitudes differing by less than 10% from experimental measurements up
to a non-dimensional time kȧ0t = 0.7, where k is the wavenumber. Linear stability
theory also provides excellent agreement for the individual mode amplitudes of multi-
mode initial perturbations until the interface becomes multi-valued. Comparison with
previously published weakly nonlinear single-mode models shows good agreement up
to kȧ0t = 3, whereas published nonlinear single-mode models provide good agreement
up to kȧ0t = 30. The effects of Reynolds number on the vortex core evolution and
overall growth rate of the interface are also investigated. Measurements of the overall
amplitude are found to be unaffected by the Reynolds number for the range of values
studied here. However, experiments carried out at lower values of Reynolds numbers
were found to have decreased vortex core rotation rates. In addition, an instability in
the vortex cores is observed. The time of appearance of this instability was found to
increase when the Reynolds number is decreased.

1. Introduction
Richtmyer–Meshkov (RM, Richtmyer 1960; Meshkov 1969) instability is the ins-

tability of an impulsively accelerated planar interface separating two fluids of different
density. For example, RM instability causes small perturbations on a flat interface,
accelerated by a passing shock wave, to grow in amplitude and eventually become
a turbulent flow. RM instability is closely related to Rayleigh–Taylor (RT, Rayleigh
1900; Taylor 1950) instability, which is the instability of a planar interface undergoing
constant acceleration, such as caused by the suspension of a heavy fluid over a lighter
one in the Earth’s gravitational field. Therefore, RM instability is often referred
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to as impulsive or shock-induced Rayleigh–Taylor instability. The simplicity of RM
instability (in that it requires very few defining parameters), and the ability to generate
it in a closed container, makes it an excellent fluid flow for the study of nonlinear
stability theory as well as turbulent transport in a heterogeneous system. The fact
that RM instability is a fundamental hydrodynamic instability that exhibits all of
the nonlinear complexities that transform simple initial conditions into a complex
turbulent flow make it a popular benchmark for computational fluid dynamics codes.

RM instability is of importance to a variety of applications spanning a wide range
of scales. For example, at very large scales, RM instability results in mixing in
supernovas. During a supernova explosion, an outward propagating spherical shock
wave formed in the collapsing core of a dying star passes through stratified outer
gas layers of differing density producing RM instability. Observations of Supernova
1987A indicate that the helium and hydrogen outer layers experienced a significant
amount of RM induced mixing as a result of this event (Arnett et al. 1989; Burrows,
Hayes & Fryxell 1995). RM instability can also occur in high-speed combustion
applications such as in supersonic combustion ramjet engines (scramjets) in which
mixing the fuel and air is a significant challenge. One proposed solution to this
problem is to pass a light gaseous hydrogen fuel jet surrounded by the (heavy) air free
stream through an oblique shock wave. The resulting RM instability increases the
mixing, yielding an augmentation of the burning rate (Markstein 1957; Curran, Heiser
& Pratt 1996). At even smaller scales, RM instability is of fundamental importance
in inertial confinement fusion (ICF). ICF uses high-energy laser beams to compress
a shell encapsulating a low-density deuterium–tritium fuel mixture. The shell–fuel
density interface undergoes a combination of RM and RT instabilities resulting in a
turbulent flow that limits the degree of compression achievable in this process. These
instabilities are the most significant reason why, in the experiments conducted to date,
the energy used to drive the lasers has greatly exceeded the energy output from the
fusion process (McCall 1983; Lindl, McCrory & Cambell 1992; Hogan, Bangerter &
Kulcinski 1992; Lindl 1995).

Taylor (1950) was the first to use linear stability theory to analyse the growth of
perturbations on a flat interface in a constant gravitational field. Using potential flow
to describe the velocity field in each of the fluids, Taylor showed that the amplitude
of a small two-dimensional sinusoidal perturbation η(x, t) = a(t) cos(kx) given to a
system with a heavy fluid with density ρ2 over a lighter one with density ρ1 evolves
according to:

a = a0 cosh
(√

kgA t
)
, (1)

where A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number and a0 is the initial amplitude.
Thus, a system oriented with a heavy fluid over a lighter one will grow exponentially
in time, and the oppositely oriented configuration (light fluid over heavy) generates
oscillating solutions, indicating stability. Richtmyer (1960) addressed the instability
of a planar interface separating two gases that is impulsively accelerated by a planar
shock wave travelling in the direction of the normal to the interface. He recognized
that for relatively weak shocks, this problem could be modelled adequately by
considering incompressible fluids in an impulsive gravitational field. Thus, he modelled
the instability using the same techniques as Taylor, except for using a gravitational
force in the form of a Dirac delta function (g(t) = �V δ(t)) and obtained the following
expression for the growth rate of the perturbation:

ȧ = kA�V a0, (2)
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where �V is the velocity change imparted by the impulsive acceleration and a0

is the initial amplitude. Thus, small perturbations to the flat interface result in a
constant growth rate, but, unlike the constant acceleration case, the instability occurs
whether the acceleration is directed from light fluid to heavy or vice versa. When
the acceleration is directed from the lighter into the heavier fluid, the resulting
body force has a similar orientation to that producing Rayleigh–Taylor instability.
Thus, the amplitude monotonically increases at a constant rate. Conversely, when
the acceleration is oppositely directed, the amplitude first decreases until it passes
through zero, after which it emerges as a growing waveform that has been shifted in
phase by 180◦.

The linear growth stage described by Richtmyer’s result lasts as long as the
perturbation amplitude is sufficiently small (typically, as long as ka < 1). When the
amplitude becomes comparable to the wavelength, the growth rate of the exact
solution decreases owing to the influence of the nonlinearity of the governing
equations. The effects of weak nonlinearity can be incorporated into the stability
analysis by developing a solution in the form of an asymptotic expansion using
the perturbation amplitude as the small parameter (Haan 1991). These solutions,
however, have the weakness that when truncated they produce results that quickly
diverge from the exact solution when the amplitude reaches moderate size. Zhang &
Sohn (1997) have found a solution to this problem by posing their series solution
as a Padé approximant which significantly extends its validity. One shortcoming of
Zhang & Sohn’s solution is that it does not possess the generally accepted asymptotic
behaviour that the growth rate decays as 1/t as time, t , approaches infinity. This
weakness has been addressed by Sadot et al. (1998) who present a model that both
captures the initial weakly nonlinear behaviour and also provides the correct late-time
asymptotic form.

The impulsive acceleration in RM instability is typically produced by the passage
of a shock wave over the interface. The most common method for generating RM
instability in the laboratory is to create a boundary between two gases in a shock tube.
Early shock tube RM experiments used a physical barrier to separate the two gases
initially in order to prevent their mixing. However, physical barriers subsequently
introduce other difficulties. The earliest of these methods, used by Meshkov (1969)
and others (Aleshin et al. 1988; Benjamin 1992; Vassilenko et al. 1992), employs
a sinusoidally shaped thin membrane between the two gases to separate them and
provide the initial perturbation. This membrane is subsequently shattered by the
incident shock wave. However, the pieces of the membrane become incorporated into
the fluid flow, impeding visualization and potentially affecting the development of the
instability. Furthermore, this method often produces initial growth rate measurements
that are significantly less than Richtmyer’s theoretical prediction, typically by a factor
of two or more.

Another method for interface formation employs a thin plate to separate the gases
(Cavailler et al. 1990; Brouillette & Sturtevant 1994; Bonazza & Sturtevant 1996).
When extracted prior to shock tube firing, the wake produced by the plate provides
a pseudosinusoidal perturbation to the interface. The results of these experiments are
limited by the fact that the initial perturbation is uncontrolled, non-uniform and often
unrepeatable. As is characteristic of all fluid instabilities, the initial state of the system
dictates future behaviour, hence any variation in initial conditions makes it difficult to
compare experimental results from experiment to experiment. The interfaces created
by this method are also very diffuse, having thicknesses equalling or exceeding the
perturbation wavelength, which significantly slows instability growth. More recently,
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experiments studying the RM instability of two nearby interfaces using a gas curtain
(Jacobs et al. 1993, 1995; Budzinski, Benjamin & Jacobs 1994; Rightley et al. 1999)
have successfully produced membraneless experiments which use advanced diagnostic
techniques. However, gravitational effects make this technique ineffective for the
generation of single-interface configurations in a horizontal shock tube.

An alternative method for forming the interface between two gases was developed
by Jones & Jacobs (1997). In these experiments, the two gases flowed from opposite
ends of the vertical shock tube, exiting through slots at the initial interface location.
The result was a relatively thin interface between the fluids that was sinusoidally
perturbed by laterally oscillating the entire shock tube to form a standing wave. This
method eliminates the influence of a membrane, yet it also provides repeatable initial
conditions. These experiments have yielded initial growth rate measurements that are
in much better agreement with linear and weakly nonlinear analyses than previous
experiments.

In response to difficulties associated with the generation of interfaces between gases
in shock tube experiments, a number of researchers have developed alternative ex-
perimental methods employing shock accelerated liquids or solids to produce the
instability. The use of solids is particularly advantageous because of the relative ease
with which a perturbation of known shape can be machined onto a solid surface.
However, very strong shocks are necessary in order to make the solids behave as
fluids. Benjamin & Fritz (1987) employed a shock wave generated by an explosive
charge to liquefy a layer of Wood’s metal in contact with a layer of water. The
sinusoidal interface machined into the Wood’s metal became RM unstable, causing
the perturbations to invert and then grow in amplitude. However, the interface in these
experiments is also stabilized by the presence of gravity, which reduces the growth
rate and makes analysis difficult. A number of investigators (Dimonte & Remington
1993; Remington et al. 1994; Dimonte, Frerking & Schneider 1995; Peyser et al. 1995;
Dimonte & Schneider 1997; Farley et al. 1999; Holmes et al. 1999) have conducted
experiments in which very strong shock waves are driven through targets consisting of
two solids in the Nova laser facility at the Lawrence Livermore National Laboratory.
In these experiments, the rapid vaporization of one end of a target produces a
shock wave that travels through the density interface which has a machined initial
perturbation. These experiments have demonstrated good agreement with linear and
weakly nonlinear theory. However, problems associated with X-ray visualization and
the difficulty in producing a pure impulsive acceleration in a laser facility make these
experiments difficult to interpret.

Richtmyer (1960) recognized that RM instability need not be considered solely as
a compressible phenomena in that the instability can be produced by impulsively
accelerating incompressible fluids. Thus, a number of experimental studies have used
this to study the incompressible RM instability. These experiments have the advantage
that it is relatively easy to produce a sharp well-defined interface between two liquids.
In addition, these experiments can be carried out at considerably lower speed than
shock generated experiments, thus greatly simplifying flow visualization. Dimonte &
Schneider (2000) developed a linear electric motor (LEM) apparatus to accelerate
a container filled with two different density liquids vertically on a rail system. The
LEM is capable of producing a variety of acceleration profiles, including constant
and impulsive acceleration profiles which have been used to study RT and RM
instabilities, respectively. The interface between the fluids was initially nominally flat,
thus the primary focus of these experiments was to study the growth of the fully
turbulent instability. Jacobs & Sheeley (1996) carried out significantly lower-speed
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RM instability experiments in which they developed a novel technique for impulsively
accelerating a system of two liquids. In these experiments, a Plexiglas tank containing
two unequal density liquids is mounted to a linear rail system constraining its main
motion to the vertical direction. The tank is gently oscillated horizontally to produce a
controlled initial fluid interface shape. The sled is then released from an initial height
and allowed to fall until it bounces off a fixed spring, which imparts an impulsive
acceleration in the upward direction. After bouncing, the tank travels upward and
then downward on the rail system while the instability develops. Note that the effects
of gravity become increasingly important as the instability growth rate is decreased.
The effects of gravity are minimized in these experiments by keeping the fluids in
free-fall while the instability is allowed to develop.

The experiments reported here use the method developed by Jacobs & Sheeley,
improved by the implementation of planar laser induced fluorescence (PLIF) imaging,
yielding much clearer views of the developing interface. In addition, the experimental
apparatus has been significantly improved by increasing the time duration in free-fall,
direct measurement of the acceleration profile, and by allowing the generation of
more complex initial perturbations.

2. Experimental methods
The experiments were conducted using a 3 m drop tower and sled with attached

instrumentation, as shown in figure 1. The drop tower’s function is to provide an
impulsive acceleration to the two-fluid system, and then allow the system to travel
safely in free-fall without external disturbances. The tower was developed using
experience gathered from the earlier apparatus of Jacobs & Sheeley (1996). Note that
the apparatus used in this study has also been used in a modified form for Rayleigh–
Taylor experiments (Wadell, Niederhaus & Jacobs 2001). The tower consists of two
pieces of vertical, 3 m long, square steel tubing with precision linear rails mounted
on the inside faces. The sled travels on the linear rails at speeds up to 6 m s−1 using
low-friction high-speed bearings. A retractable spring is mounted on vertical channels
behind the drop tower. The sled is able to contact the extended spring, but passes
freely when the spring is fully retracted. A shock absorber at the bottom of the rails
stops the sled at the end of the experiment. The sled centre of mass is oriented to
be centred between the linear rails and directly above the spring contact point to
minimize vibrations during operation.

The two fluids are contained in a clear Plexiglas tank mounted to the sled using
horizontal crossed roller bearings. The tank has interior dimensions of 254.4 mm in
height and 119.9 mm in width (the horizontal dimension in the plane of the rails).
Tanks having two different thicknesses (the horizontal dimension parallel to the
observer’s line of sight) were used. A 25.4 mm thick tank was used for the initial
experiments. However, a thicker 50.8 mm tank was used for the majority of the
experiments to minimize wall effects in the centre portion of the tank. An initial
sinusoidal perturbation is imposed on the density interface by gently oscillating the
tank horizontally at the proper frequency to produce n + 1

2
standing internal waves,

where n was varied from 0 to 4. The viscous boundary layers on the sidewalls of
the tank require the slight modification of the frequency predicted by inviscid theory.
Thus, a separate experimental investigation was undertaken to determine the precise
forcing frequency necessary to ensure clean single-mode perturbations. The resulting
perturbations have a measured wavelength prior to spring impact that is typically
3% greater than that predicted by inviscid theory based on tank width.
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Figure 1. The 3m drop tower with the sled positioned at the top of the rails.

The tank oscillation system has the capability to generate arbitrary motion. This
capability allows a sinusoidal motion with the appropriate frequency and amplitude
to produce a single-mode perturbation of the desired wavelength and amplitude. It
also allows motion composed of a combination of different sine waves to produce
more complex initial perturbations. Multi-mode initial perturbations are generated
by oscillating the container with the superposition of the oscillations required for
two or more individual modes. In both the single- and multi-mode experiments, the
oscillation is stopped prior to sled release at the point where the tank oscillation
velocity of all modes is zero. Single mode experiments presented here are limited to
modes with 21

2
waves or fewer to reduce three-dimensional effects that occur in higher

modes in the thicker (50.8 mm) tank.
Planar laser-induced fluorescence is used for flow visualization. A laser sheet

generated from an argon-ion laser with an output of 2.8 W at 488 nm illuminates
the centreplane of the fluid tank. The laser sheet intensity has a Gaussian distribution
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and a width such that the intensity is 10% lower at the tank edges than at the centre.
The sheet is 4 mm thick at its 50% power points at the tank location. Disodium
fluorescein dye is added to the heavier lower fluid at a concentration of 0.84 mg l−1

which fluoresces when illuminated by the laser sheet. The lighter upper fluid is clear
against a black background, allowing for easy distinction of the density interface. A
double-speed CCD camera mounted on the sled captures images of the fluids at a
resolution of 648 × 484 pixels at 60 Hz. The images are digitized and stored in real-
time by a computer video acquisition system for later analysis. The relatively uniform
laser illumination coupled with the low dye concentration yields images in which the
fluorescent intensity is approximately proportional to the dye concentration. No effort
was made to correct the images for light sheet non-uniformity or dye absorption to
obtain the actual dye concentration levels.

The lighter fluid used in these experiments was a water/isopropanol mixture with
a 70% volume concentration of isopropanol. The heavier fluid was a water/calcium
nitrate salt solution with a 25% by weight calcium nitrate concentration. These two
fluids are miscible and therefore have no surface tension. Batches of fluids were
mixed with sufficient volume to conduct 5 to 10 experiments with one batch. The
water/calcium nitrate solution was mixed to match the index of refraction of the
current batch of the water/isopropanol mixture (purchased premixed). The matching
of the index of refraction was necessary to eliminate distortion of the laser sheet as
it passes through the highly curved interface present at late experimental times. The
index of refraction and specific gravity of the mixtures varied slightly from batch to
batch, but a typical batch had an index of refraction of 1.3720 and a specific gravity
of 0.8731 for the lighter fluid and 1.2025 for the heavier fluid. The resulting Atwood
number was 0.1587. The kinematic viscosity of the two liquids was measured for one
batch using a viscometer. The lighter fluid was found to have a viscosity of 3.16 cSt,
while the heavier fluid was 1.55 cSt.

To begin an experiment, the heavier bottom fluid was dispensed into the tank first
to the desired level. A water-saturated piece of balsa wood slightly smaller than the
interior dimensions of the tank was then placed on top of the heavy fluid. The lighter
fluid was then dispensed at a slow rate immediately above the balsa wood through a
small tube attached to a funnel. The balsa wood continued to float above the lighter
fluid during the filling process. The tank was filled until the fluid level reached the
top of the tank before the balsa wood was carefully removed. The centre portion of
the tank lid protrudes 3.2 mm into the tank’s interior. Installing the lid with a rolling
motion forces out all air along with a small amount of fluid, resulting in a bubble-free
environment inside the sealed tank. The total time required to add the lighter fluid,
attach the lid, and begin the experiment was typically between 5 and 10 min. The
resulting interface thickness was typically 1 pixel (0.21 mm) or less.

Figure 2 shows a sequence of three-dimensional renderings of the apparatus depict-
ing an animation of a typical experiment. The sled is initially held at the top of the
rails and the retractable spring mechanism is extended and locked. The tank is
oscillated to produce the initial perturbation, and the sled released at the appropriate
time. When the sled is released, it travels down the rails until it impacts the retractable
spring and bounces upwards. As the sled travels back up the rails, the upward
momentum from the recoil of the spring, together with the assistance of a bungee
cord, unlocks the linkage holding the retractable spring mechanism. Gravity and the
bungee assist retract the spring flush with the wall before the sled returns to the ori-
ginal spring location. The sled is then able to pass by the spring and travel down the
rails until it impacts the shock absorber at the bottom of the rails. Thus, after the
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Figure 2. A sequence of images showing the sled travelling on the rail system during a
typical experiment.

initial release, the fluids experience a nearly impulsive body force in the downward
direction, followed by 900 ms of microgravity. A piezoelectric accelerometer was used
to measure the impulsive acceleration, which typically peaked at approximately 50 g
(490 m s−2). A capacitive accelerometer was also used to measure the slight bearing
drag during free-fall, which was typically less than 0.02 g (0.2 m s−2).

3. Results and discussion
The simplest example of Richtmyer–Meshkov instability is that resulting from

a small-amplitude single-mode sinusoidal initial perturbation on a sharp interface.
Figure 3 is a sequence of PLIF images showing the evolution of such an insta-
bility. This particular experiment developed from a sinusodial perturbation with a
dimensionless initial amplitude of kai = 0.23 and a wavelength λ corresponding to 11

2
waves inside the tank (λ = 82.6 mm), where k = 2π/λ is the perturbation wavenumber
and ai is the perturbation initial amplitude. The visual streaks evident in the images
taken at later times are the result of a slight mismatch in the index of refraction
in the mixed region at the fluid interface. Although the refractive index for the two
fluids was closely matched, diffusion at the fluid interface yields a thin region with
a different refractive index. The observed streaks are the result of light rays passing
through vertical sections of the interface where the mismatched index produces the
largest deflection of the vertical light rays, creating an additional non-uniformity of
the light sheet intensity. These effects are difficult to remove using standard algorithms
for the correction of the effects of light absorption and laser sheet non-uniformity,
thus no attempt was made to correct for this light intensity variation.

The first image in figure 3 was taken immediately before the sled impacted the
spring and thus shows the initial interface shape. The impulsive acceleration in these
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(a) (b) (c)

(d ) (e) (f)

(g) (h) (i)

( j) (k) (l)

Figure 3. A sequence of images from an experiment with 1 1
2

waves and kai = 0.23. Times
relative to the midpoint of spring impact are (a) −14 ms, (b) 102ms, (c) 186ms, (d) 269ms,
(e) 353ms, ( f ) 436ms, (g) 520ms, (h) 603ms, (i) 686ms, ( j) 770ms, (k) 853ms, (l) 903ms.

experiments is directed from the heavier fluid into the lighter fluid, with the resulting
body force on the fluids acting in the downward direction. This orientation causes the
initial perturbation to invert (i.e. decrease and pass through zero) before growing in
amplitude. Immediately after inversion, the interface retains a sinusoidal shape, but,
by figure 3(b), the interface begins to become non-sinusodial. Vorticity is deposited
along the interface by the baroclinic production mechanism during the acceleration,
as given by the two-dimensional vorticity equation:

Dω

Dt
=

1

ρ
∇ρ × ∇p. (3)

where ω is the vorticity vector, which is normal to the plane of the two-dimensional
motion. In this case, the density gradient ∇ρ is perpendicular to the interface whereas
the pressure gradient ∇p is hydrostatic and thus aligned with the direction of



252 C. E. Niederhaus and J. W. Jacobs

Figure 4. A close-up of a vortex core showing the distortion of the vortex tip.

acceleration. The interaction results in a sinusoidal distribution of vorticity. However,
as the instability evolves, the vorticity begins to concentrate at points midway between
the crests and troughs which correspond to the points of maximum initial interface
slope and thus the locations of maximum vorticity (Zabusky 1999). The resulting
vortices produce the symmetric mushroom pattern typical of the RT and RM
instability.

As time advances, the vortices appear to grow in size as the interface rotates around
their centres to form a spiral pattern. The interface is multi-valued by figure 3(c),
and the vortex centre has completed several turns by figure 3(l). As the instability
develops, the tips of the vortex spirals evolve into a hammerhead type form, which
can be more easily observed in figure 4. As the vortex develops, the inner portion of
the tip remains at the vortex centre while the outer half is stretched in length and
eventually extends over one full rotation before becoming too fine to observe. Note
that the interface retains its top-to-bottom symmetry well into the nonlinear regime.
This symmetry is a characteristic of the RM instability with small density differences.
Also note that the interface between the two fluids also remains sharp throughout
the experiment. The effects of the sidewalls observed in these experiments is small.
A thin boundary layer is apparent on the right-hand wall, and a small vortex forms
on the left-hand wall.

Figures 5 and 6 show sequences similar to that shown in figure 3 with different
perturbation wavelengths. Figure 5 shows the growth of the RM instability with
a 1

2
wave perturbation. Note that, in this case, the final perturbation amplitude in

figure 5(l) is as large as the 11
2

wave case of figure 3. However, the instability itself

is not as far developed as the 11
2

wave case in that the interface has not yet become
double-valued. This difference emphasizes the importance of the non-dimensional
amplitude ka, which is still small in the 1

2
wave case. Figure 6 is a sequence of images

from a perturbation with 21
2

waves. We can see that in this case the features are



Richtmyer–Meshkov instability of incompressible fluids 253

(a) (b) (c)

(d ) (e) (f)

(g) (h) (i)

( j) (k) (l)

Figure 5. A sequence of images from an experiment with 1
2

wave and kai = 0.06. Times
relative to the midpoint of spring impact are (a) −13 ms, (b) 120ms, (c) 204ms, (d) 270ms,
(e) 354ms, (f ) 437ms, (g) 504ms, (h) 587ms, (i) 671ms, (j ) 738ms, (k) 821ms, (l) 904ms.

qualitatively the same as observed in the 11
2

wave case. However, as will be discussed
later, there are differences in the development of the vortex cores.

3.1. Linear growth regime

Richtmyer’s (1960) linear stability analysis shows that the amplitude of the interface
satisfies the following differential equation:

ä(t) = −kAg(t) a(t). (4)

Note that when the gravitational acceleration is zero, as occurs when the sled is in
free-fall, the theoretical growth rate ȧ is constant. Richtmyer assumed g(t) to be in
the form of a Dirac delta function (i.e. g(t) = �V δ(t)) and integrated equation (4) to
obtain the post-acceleration growth rate in equation (2).
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(a) (b) (c)

(d ) (e) (f)

(g) (h) (i)

( j) (k) (l)

Figure 6. A sequence of images from an experiment with 2 1
2

waves and kai = 0.16. Times
relative to the midpoint of spring impact are (a) −25 ms, (b) 92 ms, (c) 175ms, (d) 259ms,
(e) 342ms, (f ) 426ms, (g) 509ms, (h) 592ms, (i) 676ms, (j ) 759ms, (k) 843ms, and (l) 909ms.

The acceleration pulse imparted to the fluids in the present experiments has
a triangular shape as shown in figure 7, with a typical duration of 26 ms, a
peak magnitude of 50g, and an integrated impulse �V of 6.4 m s−1. The unusual
acceleration profile observed in this plot is the result of the impact loading of a stiff
spring coupled to the sled by a thick rubber pad. The impact loading of the spring
produces a series of compression waves travelling along the length of the spring.
Without the rubber pad, these travelling waves would be transmitted to the sled,
resulting in a series of large acceleration spikes. The rubber was used to reduce
and dampen these oscillations, which are still slightly visible as a higher frequency
wave superimposed on the acceleration pulse. The length of this acceleration pulse is
too long to use (2) accurately to model the early time instability growth. However,
by using the measured perturbation amplitude a and velocity ȧ prior to impact,
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Figure 7. A plot of sled acceleration versus time for a typical experiment.

along with the measured acceleration, equation (4) can be numerically integrated to
determine the theoretical post-impulse amplitude and velocity. Figure 8 shows the
results of this integration for a typical experiment. As described above, the direction
of acceleration in these experiments initially results in the temporary stabilization of
the interface. Therefore, the amplitude of the crests and troughs decreases while under
acceleration. However, the momentum imparted to the fluid by this action remains
after the acceleration is removed. Thus, the result is the inversion of the interface,
and the subsequent rapid growth of the perturbation.

Figure 9 shows the early time behaviour of the amplitude for all of the single-
mode experiments reported here. The amplitude is non-dimensionalized in this plot
using the perturbation wavenumber k, while time is non-dimensionalized using the
wavenumber and the theoretical initial growth rate ȧ0 obtained from the integration of
(4). Note that t = 0 is found by extrapolating the integrated, theoretical post-impulse
perturbation growth to zero amplitude. In this non-dimensionalization, linear theory
has a growth rate of 1, and is shown by the solid line in the plot. The experiments
show excellent agreement with linear theory up to kȧ0t = 0.3 and are within 10% of
the theory at kȧ0t = 0.7, where nonlinear effects begin to become important. It should
be noted that linear theory is derived assuming |ka| � 1. Thus, it is surprising how
accurate it is at moderate values of ka. The maximum initial amplitudes, kai , for the
1
2

wave, 1 1
2

wave and 21
2

wave experiments were 0.06, 0.50 and 0.66, respectively.

3.2. Weakly nonlinear growth regime

Figure 10 shows the intermediate-time amplitude measurements (kȧ0t � 5), along
with lines corresponding to two weakly nonlinear solutions developed by Zhang &
Sohn (1997). The first is a weakly nonlinear fourth-order perturbation solution for
the amplitude which was developed in much the same manner as Richtmyer’s (1960)
original linear analysis. Perturbation theory assumes a solution in the form of an
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Figure 8. A plot of perturbation amplitude and velocity during the impulsive acceleration
for a typical experiment obtained from the integration of equation (4) using the measured
acceleration history.
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corresponding to linear stability theory.
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Figure 10. A plot of intermediate-time non-dimensional amplitude versus time along with
curves corresponding to two weakly nonlinear solutions developed by Zhang & Sohn (1997).
Only every third data point in each experiment is shown.

asymptotic expansion for the surface elevation

η = η(1) + η(2) + · · · (5)

where η(n) ∝ (kai)
n. The solution obtained by Zhang & Sohn assumes an impulsive

body force directed from the heavy fluid into the light fluid and a finite initial
amplitude. The non-dimensional amplitude ka can be written in terms of the
parameters kai , A and σ = −k A�V . The solution is not directly comparable to
the present experiments which have an oppositely directed as well as a finite-duration
acceleration. However, by letting the initial amplitude approach zero while maintaining
a constant post-impulse growth rate (kai → 0 while σkai =constant = kȧ0), we can
obtain an expression appropriate for comparison with our experiments. The result
for the overall amplitude (the peak-to-peak amplitude divided by two) then becomes

ka = kȧ0t − 1
6

− 1
3
A2(kȧ0t)

3 + O(kȧ0t)
5. (6)

Note that the second- and fourth-order terms do not contribute to the overall
amplitude. Equation (6) is plotted in figure 10, evaluated at a representative
experimental Atwood number of 0.155. This solution agrees with the experimental
data to within 10% up to kȧ0t =1.3, but then rapidly diverges owing to its cubic form.

Recognizing the limited range of validity of this type of solution, Zhang & Sohn
(1997) differentiated their amplitude perturbation expansion to develop a perturbation
expansion for the growth rates of the bubble, spike and overall amplitude. A bubble
is defined as the portion of the interface where the light fluid penetrates the heavy
fluid, and a spike is the portion of the interface where the heavy fluid penetrates
the light fluid. The overall amplitude is the average of the bubble and spike
amplitudes. These series solutions were then approximated with Padé approximants
to extend their range of validity. By again taking the limit as kai → 0 while keeping
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σkai = constant = kȧ0, Zhang & Sohn’s expression for the overall amplitude growth
rate can be rewritten (for the case when kai > A2 − 1/2) as

kȧ =
kȧ0

1 +
(

1
2

− A2
)
(kȧ0t)2

, (7)

which after integration yields:

ka =
1√

1
2

− A2
tan−1

(√
1
2

− A2 kȧ0t

)
. (8)

Evaluating (8), using A= 0.155, results in the curve shown in figure 10. This expression
extends the range of agreement (to within 10%) for this theory to kȧ0t =3.

3.3. Fully nonlinear growth regime

3.3.1. Vortex model

Jacobs & Sheeley (1996) noted that the vorticity in these experiments eventually
coalesces into discrete vortices. They subsequently modelled the flow as a row of line
vortices of alternating sign, assuming an Atwood number of zero and obtained the
following expression for the overall amplitude

ka = sinh−1

(
2

π
kȧ0(t − tp) + sinh(kap)

)
, (9)

where tp and ap are the time and amplitude, respectfully, when the vorticity is

assumed to concentrate. Since sinh−1(x) ∼= ln(2x) for large values of x, this model
gives logarithmic late time growth. Thus, the late time velocity becomes

ȧ =
1

k t
. (10)

Figure 11 is a logarithmic plot of the late-time velocity calculated by taking the
derivative (using a first-order backward difference) of the amplitude measurements
for kȧ0t � 30. These measurements are shown normalized by the theoretical initial
growth rate ȧ0 obtained from the integration of (4). As is clearly observed in this plot,
the velocity agrees very well with equation (11) for kȧ0t ≈ 2, although the logarithmic
coordinates make it insensitive to detecting small differences in the constant of
proportionality in equation (10). The increased scatter at late times is due in part to
the decreasing resolution in the derivative of the amplitude at late times.

Figure 12 compares the late-time amplitude measurements (kȧ0t � 30) with a curve
generated from (9) assuming the vorticity concentrates immediately after impact, i.e.
kȧ0tp = 0. The vortex model gives an initial growth rate that is lower by a factor of
π/2 than that given by linear theory. This is consistent with the assumption in the
linear stability analysis that the vorticity has a sinusoidal distribution, rather than
a discrete distribution assumed by the vortex model. However, since the vorticity in
the experiments does not concentrate until much later, this curve underestimates the
amplitude. Thus, the condition kȧ0tp = 0 can be considered a lower bound on the
amplitude. Nevertheless, the curve appears to have the same general shape as the ex-
perimental data, and differs from the measurements by less than 10% at late times.
Also shown in figure 12 is a curve generated assuming the vorticity concentrates at
kȧ0tp = 6 (kap = 2.4), at a point approximately corresponding to figure 3(f ) and figure
6(g). This assumption reduces the difference between the model and the late-time
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Figure 11. A plot of late-time non-dimensional velocity versus time compared with the
asymptotic value given by the vortex model (10). Every tenth data point in each experiment is
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amplitude to less than 5% over the range tested. This difference may be attributed
to the fact that the model is strictly valid only for Atwood number of 0. It is
interesting to note that increasing the initial growth rate in (9) by a factor of π/2
yields, ka = sinh−1(kȧ0t), which has the same functional form as (9), but also captures
the correct initial growth rate. This function is also plotted in figure 12 showing that
even though it assumes an incorrect value of the circulation, it provides an excellent
fit to the data.

3.3.2. Interpolation model

Sadot et al. (1998) proposed the following rational function interpolation between
existing early-time and late-time models for the bubble and spike velocities:

Ub/s(t) = U0

1 + Bt

1 + Dt + Et2
, (11)

where

Bb/s = U0 k, (12)

Db/s = (1 ± A)U0 k, (13)

Eb/s =
1 ± A

1 + A

1

2πC
U 2

0 k2. (14)

and U0 is the initial velocity (i.e. ȧ0). In these expressions, the plus sign is used for the
bubble velocity and the minus sign is used for the spike velocity. At small time, the
bubble and spike velocities are given by:

Ub/s = U0 (1 ∓ AkU0 t) . (15)

which is identical to the first two terms of the fourth-order weakly nonlinear
perturbation solution of Zhang & Sohn (1997). At large time, the bubble and spike
velocities are given by:

Ub/s =
2πC (1 + A)

k (1 ± A) t
. (16)

Thus, they possess the 1/t dependence of the vortex model discussed above. The
constant C is a function of the asymptotic velocity of the bubbles and spikes. The
values for C given by Sadot et al. (1998) are obtained from the computations of
Alon et al. (1995), in which they found C = 1/3π for A � 0.5, and 1/2π for A → 0.
However, these values can also be obtained using methods similar to those used by
Takabe & Yamamoto (1991) and Alon et al. (1995) to model the motion of an RT
bubble. The differential equation governing the motion of a two-dimensional bubble
in a gravitational field (see figure 13) is:

(ρ1 + κρ2) Vb

∂Ub

∂t
= − 1

2
CD Sb ρ2 U 2

b + (ρ2 − ρ1) Vb g, (17)

where Vb is the bubble volume, Sb is the bubble frontal area, CD is the bubble
drag coefficient, and κ is the virtual mass coefficient. The densities of the light and
heavy fluids are ρ1 and ρ2, respectively. Equation (17) is a simple force balance with
acceleration, drag and buoyancy terms. In the case of RM instability in the post-
impulse stage, the acceleration g = 0. Thus, if κ = 1 as would be the case if the bubble
had the shape of a circular cylinder, and it is assumed that Vb/Sb ∝ λ ∝ 1/k, the
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Figure 13. The configuration used for the bubble force balance model.

solution for the bubble velocity is:

Ub ∝ 1

k (1 + A) t
. (18)

This same procedure can be used for an RM spike, employing a slightly modified
form of (17), yielding:

Us ∝ 1

k (1 − A) t
. (19)

Note that equation (10), developed using the vortex model with A= 0, yields the
asymptotic velocity U = 1/kt for both the bubble and the spike. Therefore, the
constant of proportionality in (18) and (19) may reasonably be assumed to be 1 for
both the bubble and the spike in the small Atwood number limit. Also note that
equation (19) for the spike velocity does not apply when A= 1, in which case the drag
is theoretically zero and the solution to the force balance differential equation (17)
has a different form. Equations (18) and (19) can be used with equation (16) (with
the proportionality constant = 1) to solve for C, yielding:

C =
1

(1 + A)2π
. (20)

This constant C is equal to 1/3π at A= 0.5 and 1/2π at A= 0. Thus, it is in agreement
with the computational results in Alon et al. (1995) in this range of Atwood numbers.
However, it should be noted that (20) yields a value C =1/4π in the limit A → 1
which disagrees with previous numerical and theoretical studies which give C = 1/3π
(Hecht, Alon & Shvarts 1994; Alon et al. 1995). This difference implies that the
constant of proportionality in (18) and (19) may be only 1 for small or moderate
values of the Atwood number. Note that Alon et al. report using the same analytical
procedure as described above, but obtained different expressions for the asymptotic
velocities (equations (18) and (19)). This discrepancy was later corrected by Oron
et al. (2001). However, this more recent analysis uses a much larger value for the
added mass coefficient. Thus, they obtain expressions for Ub/s that differ significantly
in form from ours.

The perturbation amplitude can be obtained from (11) by integrating the bubble
and spike velocities separately. The result of this integration for the overall amplitude
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(the average of the bubble and spike amplitudes) is plotted on figure 12 for C = 1/2π.
The curve shows good agreement with the early-time data, but overestimates the late-
time amplitude by 10%. Also shown on figure 12 is a curve generated by integrating
equation (11) using C = 1/(1 + A)2π with the experimental value of A= 0.155. This
curve appears to model the initial growth rate correctly, as well as the late-time
asymptotic velocity. This modified form of Sadot et al.’s model shows much better
agreement with the late-time amplitude measurements and appears to predict the
perturbation amplitude data accurately over the entire time duration investigated.
The improved agreement with the modified form of this model can be attributed to
the fact that the value C = 1/2π is strictly true only for Atwood number zero. Note
that Alon et al. acknowledged that C varied with Atwood number, but did not give
a specific function for Atwood numbers less than 0.5. It should be stressed that this
model does not intrinsically solve the flow field, but is simply an interpolation that
matches both the early-time and late-time growth rates.

3.3.3. Bubble and spike measurements

The overall amplitude measurements presented in the previous sections ignore
differences between the bubble and spike amplitudes. As the Atwood number of the
system approaches zero, the bubbles and spikes become symmetrical about the mean
interface location. Thus, the bubbles and spikes have identical amplitudes, growth
rates, and shapes. However, at larger Atwood numbers, differences between the
bubbles and spikes become apparent. The heavier spikes grow faster than the lighter
bubbles. The spikes also have smaller widths than the bubbles. In the experiments
presented here with Atwood number of 0.155, there is a small but measurable
difference between the bubble and spike amplitudes.

Figure 14 shows the separate bubble and spike amplitudes for the experiments. The
amplitude is measured relative to the location of the flat interface prior to impact.
The growth rates of the bubbles and spikes are initially the same, as predicted by
weakly nonlinear theory. However, the spike amplitude becomes 10% greater than
the bubble amplitude when kȧ0t = 0.8, and 30% greater when kȧ0t = 15. Also shown
on figure 14 are curves corresponding to the bubble and spike amplitudes found
by integrating (11). These results use our derived constant C (equation (20)) that
more accurately models the late-time growth rate. Again, this modified model shows
good agreement with the experimental measurements. However, experiments at other
Atwood numbers would be necessary to determine whether the expression has the
correct Atwood number dependence.

3.4. Multi-mode initial perturbations

While single-mode perturbations are the most often studied in laboratory experiments,
real applications involving RM instability are inevitably composed of disturbances
with many wavelengths. Multi-mode interfacial perturbations were generated in the
present investigation by oscillating the fluid container with a combination of two or
more different frequencies. Figure 15 is a sequence of images showing the evolution
of an experiment initiated with a combination of a 11

2
wave mode and a 21

2
wave

mode as the initial perturbation. Figure 15(a) was taken slightly before the impulsive
acceleration and shows the initial interface shape resulting from the combination of
these two modes. According to linear theory, at small amplitudes, the two modes
evolve independently and the mode with the shorter wavelength grows more rapidly
(since ȧ ∝ kai). In figure 15(b), the long wavelength mode has decreased to nearly zero
amplitude, while the short wavelength mode has inverted and thus is the dominant
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Figure 14. A plot of separate bubble and spike amplitudes versus time compared with the
model of Sadot et al. with modified constant C. Every fifth data point in each experiment is
shown.

mode visible. In figures 15(c)–15(l), this multi-mode instability evolves, forming a more
complex structure than that observed in the small-amplitude single-mode experiments.
Note that the vorticity concentrates at points where the initial perturbation has local
maxima in slope, which are also the points of maximum baroclinic vorticity generation.
Also note the unusual symmetry of the interface about the centre of the tank owing
to the small density difference of the fluids.

3.4.1. Multi-mode analysis

To analyse the multi-mode experiments, the interface was parameterized by finding
the coordinates of a set of points (xI , yI ) lying on the interface using an edge-detection
routine, neglecting points near the sides of the tank to reduce the possible wall effects.
These points were then curve-fitted to a function of the form,

y(x) = y0 + a1 sin[k1(x − x0)] + a2 sin[k2(x − x0)] + · · · (21)

to determine the individual mode amplitudes, assuming k1 and k2 to be equal to those
of the imposed initial perturbation. An example of the resulting curve fit is shown
in figure 16, which illustrates the capability of the perturbation generation method
to produce high-fidelity multi-mode initial perturbations. As mentioned above, at
small amplitudes the various modes should act independently of each other and their
evolution should be described by linear theory. Therefore, the method of analysis used
for the single-mode experiments was also employed for the multi-mode experiments.
Figure 17 shows the time dependence of the non-dimensional mode amplitude for nine
multi-mode experiments. The modes show excellent agreement with linear theory for
kȧ0t < 0.3. Beyond that time, the interface becomes multi-valued (at different times
depending on the initial conditions) making the curve fitting of (21) no longer valid.
The agreement between the measurements and theory at early times in the plot
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(d ) (e) (f)
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Figure 15. A sequence of images from a multi-mode experiment with a combination of a 11
2

wave and a 21
2

wave initial perturbation. Times relative to the midpoint of spring impact are
(a) −15ms, (b) 18ms, (c) 101ms, (d) 185ms, (e) 285ms, (f ) 368ms, (g) 452ms, (h) 552ms, (i)
635ms, (j ) 719ms, (k) 819ms, (l) 902ms.

confirms that the multi-mode perturbations do act independently and follow linear
theory in the small-amplitude regime.

3.4.2. Multi-mode examples

Other examples of multi-mode RM instabilities are shown in figures 18–20.
Figure 18 shows the RM instability resulting from the combination of a 1

2
wave

and 21
2

wave initial perturbation. The two different wavelengths are clearly present in
figure 18(a), taken before the impulsive acceleration. This initial perturbation produces
three vortices of the same sign with the centre vortex larger in size. The development
of an initial perturbation with 11

2
waves and 41

2
waves is shown in figure 19. Note that

the 41
2

wave mode is the second harmonic of the 11
2

wave mode. Thus, it produces two
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Figure 16. A plot showing the curve fit of (21) to the interface locations obtained from an
edge-detected image from an experiment with a combination of 1 1
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(a) (b) (c)

(d ) (e) (f)

(g) (h) (i)

( j) (k) (l)

Figure 18. A sequence of images from a multi-mode experiment with a combination of a 1
2

wave and a 21
2

wave initial perturbation. Times relative to the midpoint of spring impact are
(a) −27ms, (b) 23ms, (c) 107ms, (d) 190ms, (e) 290ms, (f ) 374ms, (g) 457ms, (h) 557ms,
(i) 641ms, (j ) 724ms, (k) 824ms, (l) 907ms.

vortices per fundamental half wavelength in contrast to one vortex per half wavelength
produced in the single-mode experiments. This mode combination evolves to form a
double-mushroom shape with vertically stacked vortices. The detailed development
of this and all multi-mode experiments depended strongly on the relative amplitudes
of the initial modes.

Figure 20 shows the RM instability produced by a 1
2

wave and 41
2

wave initial
perturbation. Five vortices of the same sign are formed over the half wavelength
of the fundamental perturbation. The central three vortices appear to be the same
strength, thus this flow closely resembles Kelvin–Helmholtz instability. Figure 20(a)
shows that the amplitude of the 1

2
wave perturbation is much larger than that of the

41
2

wave perturbation. The large 1
2

wave perturbation produces a shear flow across
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Figure 19. A sequence of images from a multi-mode experiment with a combination of a 11
2

wave and a 41
2

wave initial perturbation. Times relative to the midpoint of spring impact are
(a) −18 ms, (b) 16 ms, (c) 99 ms, (d) 182ms, (e) 282ms, (f ) 366ms, (g) 449ms, (h) 549ms, (i)
633ms, (j ) 716ms, (k) 816ms, (l) 900ms.

the tank, with the small 4 1
2

wave perturbation serving as an initial perturbation for
the Kelvin–Helmholtz instability.

3.5. Reynolds number effects

3.5.1. Reynolds number definition

An important aspect of RM instability that has not been discussed in earlier
investigations is the dependence of the Reynolds number on the flow. The Reynolds
number is defined as Re = Ul/ν, where U , l and ν are characteristic values of velocity,
length and kinematic viscosity. Obvious length and velocity scales appropriate in RM
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(a) (b) (c)

(d ) (e) (f)
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( j) (k) (l)

Figure 20. A sequence of images from a multi-mode experiment with a combination of a 1
2

wave and a 41
2

wave initial perturbation. Times relative to the midpoint of spring impact are
(a) −20ms, (b) 30ms, (c) 113ms, (d) 197ms, (e) 297ms, (f ) 380ms, (g) 464ms, (h) 564ms,
(i) 647ms, (j ) 731ms, (k) 831ms, (l) 914ms.

instability are the perturbation amplitude a and growth rate ȧ, yielding

Rep =
aȧ

(ν1 + ν2)/2
. (22)

Figure 21 shows a plot of Reynolds number defined using (22) for a typical single-
mode experiment from this investigation which shows that (22) yields a time dependent
value. Thus, defined this way, the Reynolds number initially grows linearly in time
(as is indicated by linear theory) peaking at kȧ0t =1.6 and then decays toward zero.
It is important to recognize that the flow at late time is dominated by the vortices
that form at the nodes of the perturbation. Thus, an alternative Reynolds number
more appropriate to the vortical flow may be defined using the circulation of one of
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Figure 21. A plot of perturbation Reynolds number (based on amplitude and velocity)
versus time for a typical experiment.

the vortices and the average kinematic viscosity of the two fluids:

Re =
Γ

(ν1 + ν2)/2
. (23)

Note that the circulation cannot be easily measured in the present experiments.
However, it can be estimated from measurements of the initial growth rate, as was
done by Jacobs & Sheeley (1996). If we assume the flow field to be that given by
linear stability theory, the circulation can be found by integrating the vortex sheet
strength over half a wavelength of the interface. The result is that the circulation
strength of a vortex is given by:

Γ =
4ȧ0

k
, (24)

which is constant during the experiment if viscous dissipation and the baroclinic
generation of secondary vorticity is negligible. Therefore, the vortex Reynolds number
can be calculated using:

Re =
8ȧ0

k(ν1 + ν2)
. (25)

Thus, this definition yields a Reynolds number that has a constant value. This
vortex Reynolds number (Rev) can be related to the perturbation Reynolds number
(Rep). Figures 9, 11 and 12 demonstrate that the dimensionless amplitude ka in the
experiments is a function of only the dimensionless time scale kȧ0t , i.e.

ka = f (kȧ0t), (26)

therefore

kȧ = kȧ0 f ′(kȧ0t), (27)
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and the perturbation Reynolds number can be written as

Re =
aȧ

(ν1 + ν2)/2

=
1

k2

2kakȧ

ν1 + ν2

=
2ȧ0

k(ν1 + ν2)
ff ′

= Rev

ff ′

4
. (28)

Therefore, the perturbation Reynolds number is equal to the vortex Reynolds number
multiplied by a function of time, the value of which ranges from 0 to 0.16. This
vortex Reynolds number is also proportional to the Reynolds number defined using
initial growth rate and perturbation wavelength as velocity and length scales. Unless
specifically noted, values of the Reynolds number quoted in the following text refer to
the vortex Reynolds number (23). Note that the value of Reynolds number achievable
in an experiment varies greatly with the perturbation wavelength. Thus, it is possible
to achieve much larger values of circulation and Reynolds number using longer
wavelength perturbations. The Reynolds number for the experiments presented here
range from 1100 to 8500.

3.5.2. Vortex turning rate

The experiments in this study spanned a wide range of initial amplitudes and
Reynolds numbers. It is therefore remarkable that the non-dimensional scaling used
in figures 9, 11 and 12 effectively collapses the amplitude measurements for the entire
range of experimental parameters investigated. This degree of collapse indicates that
the late-time amplitude is determined only by the perturbation wavenumber and initial
growth rate. Thus, the Reynolds number does not appear to influence the amplitude
measurements. However, the Reynolds number was observed in the experiments to
have an effect on the evolution of the vortex cores. This effect can be observed by
visually comparing the images in figures 3 and 6. In the last few images of both of
these sequences, the non-dimensional amplitude is approximately the same. However,
we can easily observe a noticeable difference in the vortex cores, in which the longer
wavelength experiment shows a significant increase in the number of turns or coils.
This effect can be quantified by considering the vortex core turning rate (i.e. the rate
of rotation of the vortex cores). One method of quantifying the turning rate is to
determine the non-dimensional time when the interface becomes multi-valued and
when the centre of the vortex completes a specified number of turns. Figure 22 shows
measurements of the time when the interface first becomes multi-valued and when
the vortex core has completed 1, 2 and 3 turns plotted as a function of the Reynolds
number. The interface is considered multi-valued when its maximum slope becomes
infinite, i.e. when it has rotated 90◦ from a horizontal position. Defining the number
of turns is more difficult and subjective in part because of the non-symmetrical form
and rapid rate of the initial vortex development. After attaining infinite slope, the
interface in a small region near the vortex core rapidly rotates 180◦ and develops a
fold that eventually becomes the tip of the vortex spiral. For consistency, this folded
condition is considered to be the starting point in the rotation process. Turning is
then defined as the angular rotation of this heavy (dyed) fluid tip. A completed turn
is defined as when the heavy fluid tip of the spiral is vertical and has rotated n × 360◦
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Figure 22. A plot of Reynolds number versus time describing the vortex core evolution.

from the initial folded condition. In figure 3(b), the interface is nearly vertical, and
the vortex core has completed slightly more than 1 turn in figure 3(e), and slightly
more than 2 turns in figure 3(h). The vortex core shown in figure 4 has completed
slightly over 2 turns. Note that this definition yields a nearly constant time between
turns and thus a constant rotation rate.

Figure 22 shows that the interface becomes multi-valued at kȧ0t ∼= 1.5 for all the
experiments in the Reynolds number range tested for both the 11

2
and 21

2
wave

cases. The time to complete 1, 2 and 3 turns appears to be independent of the
Reynolds number for experiments with Reynolds numbers greater than 6000 over
the times investigated. Therefore, the flow appears to be inertia dominated above a
Reynolds number of 6000. At lower Reynolds numbers, the turning rate is observed
to decrease as the Reynolds number is decreased indicating that the fluid viscosity
is important. Thus, the primary effect of viscosity in these experiments is to reduce
the number of coils observed in the vortex cores. Viscosity causes the vorticity to
diffuse out from the vortex centres, leading to a decrease in the turning rate of the
vortex cores. This process will eventually cause the vorticity from adjacent vortices
to merge reducing the circulation, and thus, the overall growth rate. The fact that
the amplitude measurements in this study appear to be independent of the Reynolds
number suggests that vortex core sizes must still be small when compared to the
vortex spacing for these experiments.

Note that the rotation rate measurements are very consistent for experiments
carried out with a particular perturbation wavelength. However, there appears to
be an inconsistency between experiments carried out with different wavelengths.
This inconsistency is most easily observed in figure 22 when comparing the time to
attain 3 turns for the 11

2
and 21

2
wave experiments. This discrepancy may have been

caused by the fact that the dimensionless initial amplitudes of the shorter-wavelength
experiments were generally larger than their longer-wavelength counterparts in order
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(a) (b) (c)

(d ) (e) (f)

(g) (h) (i)

( j) (k) (l)

Figure 23. A sequence of images from a 11
2

wave experiment where the vortex core exhibits
a secondary instability. Times relative to the midpoint of spring impact are (a) −24 ms,
(b) 93ms, (c) 176ms, (d) 260ms, (e) 343ms, (f ) 426ms, (g) 510ms, (h) 593ms, (i) 677ms,
(j ) 760ms, (k) 843ms, (l) 910ms.

to obtain the same value of Reynolds number. In other words, a 21
2

wave experiment
must have a larger dimensionless initial amplitude in order to achieve the same
Reynolds number as a 11

2
wave experiment with the same impulsive acceleration.

Thus, the effects of nonlinearity may have produced the small differences in the
tuning rate observed in figure 22.

3.5.3. Vortex instability

Experiments carried out early in this investigation with relatively low values of the
Reynolds number consistently showed a laminar spiralling of the interface around
the vortex centre. However, later experiments carried out with significantly larger
initial amplitudes and thus larger Reynolds numbers showed the appearance of an
apparent secondary instability inside the vortex cores. Figure 23 shows a series of
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Figure 24. Close-up of a vortex core during the early stages of the secondary instability.
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Figure 25. A plot of Reynolds number versus the time when the vortex core becomes
unstable. Also shown are times when the vortex completes 3 turns.

images with kai = 0.29 and a Reynolds number of 4830 exhibiting this behaviour.
The instability initially develops very similarly to the lower-amplitude cases. However,
at figure 23(h), we can see the beginning of a secondary instability in the core of
the vortex. By figure 23(k), the instability has spread throughout the core and the
interface is no longer sharp, indicating that the fluids have begun to mix on a smaller
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scale. Thus, it appears that this is the beginning of the transition to turbulence of the
vortex cores.

Figure 24 shows a close-up of the core of an unstable vortex. The secondary
instability initially takes the form of waves superimposed on the core spiral. These
waves initiate near the centre of the core and grow in size and extent until all layers
of the core spiral are affected. The non-dimensional time when the amplitude of these
secondary instability waves is equal to the spiral thickness is shown in figure 25 versus
the Reynolds number. Also shown is the dimensionless duration of the experiments
in which the vortices remained stable throughout the experiment. We can clearly see
that the experiments with larger Reynolds numbers develop the secondary instability
sooner. Furthermore, this transition time appears to be correlated well to the time
when the core has made approximately three complete turns.

4. Conclusions
Incompressible Richtmyer–Meshkov instability is studied in a novel experimental

apparatus that allows for a quantitative analysis of the two-dimensional instability
from the early linear stages, through the nonlinear regime, and into the initial
stages of the transition to turbulence. Miscible liquids with moderate Atwood
number were employed in this investigation. The use of liquids avoided many of
the experimental difficulties previously limiting the study of the RM instability. The
instability was generated by elastically bouncing a fluid-filled container off a vertical
spring, imparting an impulsive acceleration. The subsequent free-fall permitted the
instability to evolve in the absence of gravity far into the nonlinear stages. Planar
laser-induced fluorescence allowed for extremely clear observations of the flow through
the nonlinear regime.

Amplitude measurements are found to be in excellent agreement with linear stability
theory for small amplitudes, differing by less than 10% up to a non-dimensional time
kȧ0t of 0.7. Linear stability theory also shows excellent agreement for multi-mode
experiments until the interface became multi-valued. The fourth-order single-mode
perturbation solution of Zhang & Sohn (1997) is found to provide good agreement
with amplitude measurements up to kȧ0t of 1.3. Zhang & Sohn’s Padé approximation
to their perturbation solution is found to extend the range of agreement for amplitude
up to kȧ0t of 3. A discrete vortex model (Jacobs & Sheeley 1996) and the model of
Sadot et al. (1998) are also compared to experimental amplitudes in the nonlinear
regime. These two models are shown to be within 10% of the amplitude measure-
ments up to kȧ0t of 30. The best agreement between experiments and theory is
obtained from Sadot et al.’s model modified by using a new estimate for the asymptotic
velocity.

Previous studies have not considered the influence of Reynolds number on the
RM instability. This study examines the effects of Reynolds number defined using
the vortex circulation. The time dependence of the overall perturbation amplitude is
found to be independent of Reynolds number. However, the evolution of the vortex
cores is found to be influenced by the Reynolds number when its value is sufficiently
low. For the time duration studied, experiments with Reynolds numbers greater than
6000 are found to be independent of Reynolds number, indicating the flow is inertia
dominated. Decreasing Reynolds number is found to lower the vortex turning rate.
A secondary instability is observed to occur in the vortex cores of experiments with
higher values of the Reynolds number. The time when the secondary instability was
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first manifest appears to correlate well with the Reynolds number and is observed to
occur when the core has made approximately three complete turns.

The experiments presented here demonstrate the merit of low-speed incompressible
experiments for the study of RM instability. Low-speed incompressible experiments
are in many respects notably superior to the more popular shock-tube experiments.
For example, liquid experiments allow the generation of a sharp well-defined
membraneless interface between the two fluids, an accomplishment currently
unachievable in shock-tube experiments. Furthermore, the highly resolved motion
sequences in these experiments could only be acquired using a video camera that
travels with the unstable interface, a process that would be impossible to implement
in shock-tube experiments.

The well-defined initial conditions combined with the imaging advantages have
allowed these experiments to yield the most highly resolved motion sequences of
the RM instability to date. In addition, the dimensionless times achieved in this
experiment are three times greater that the longest duration shock-tube experiments.
Thus, these experiments provide benchmark data for the comparison of numerical
codes and nonlinear models of the late-time development of RM instability. The
quality of the experimental image sequences has also allowed for the quantification
of the effects of the Reynolds number on the instability including the development
of a criterion for the occurrence of a secondary instability in the vortex cores.
Although these experiments are incompressible, the results are applicable to many
compressible situations that behave in an incompressible fashion after the shock
waves have passed. These experiments also have moderate values of the Reynolds
number. However, this study has shown that the effects of Reynolds number are
confined to the vortex cores and have insignificant influence in the instability growth
rate. Thus, the amplitude measurements presented here should be in agreement with
experiments carried out at much larger Reynolds numbers and thus are useful to ICF
and other higher-Reynolds-number applications.

This work was supported by Lawrence Livermore National Laboratory and by
NASA’s Microgravity Fluid Physics Program.
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